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Our challenges
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• Spacecraft data archives are growing very fast in size and complexity

• Advent of satellite (mega) constellations multiplies this growth

– insight from multiple satellites' data at once?

• Solutions might reflect data structure

– but more often - team structure

– federated solutions are especially complex

• Integrating and updating dependencies becomes a burden

– commercial offers like Cloudera might help here

• Investments in such storage need to be justified  
→ more projects and missions share one setup 

→ more investment to accommodate size and varying needs

• Hardware requirements are very high

– usually require a computing cluster

– difficult to run on a laptop

Can we build a simple and generic tool that would cover most of use cases?
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STAT Design Goals
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• STAT – a data archiving and analysis tool for Terma Ground Segment Suite (TGSS)

• Core SQL model

– unified access to data of various nature

– common language for different engineers

– public API through SQL views and functions

• Choose your own analytics tool

– Jupyter notebooks, Grafana, Excel, Tableau etc

– Grafana as a baseline

• Data sources:

– CCS5: spacecraft checkout and mission control system

– ORBIT: flight dynamics system

– 3rd party software
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STAT Design Goals
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• Primary focus on numerical and discrete housekeeping TM

• Support both AIT and OPS

• Minimal dependencies; support Windows & Linux
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Technology Stack
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• PostgreSQL

– Schemas help with separating public API from implementation details

– Foreign-data wrapper (FDW) for importing data

– Performance bottlenecks can be found early and easily with EXPLAIN

• TimescaleDB for time series

– data stored in “hypertables”

– same standard SQL, JOINs with other PostgreSQL tables

– transparent compression

– continuous aggregates

– open-source, permissible license

– excellent user manual

• Python

– Dash & Plotly for highly customizable WebUI

– Flask for the Web server and RESTful API

– “wheel” installer for PIP
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Workflow
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Hypertables

1 February 2021 7

• “Hypertable” looks like a normal SQL table with a timestamp column

• In fact, it is an abstraction over a set of “chunks”

• Each chunk is a normal PostgreSQL table and corresponds to a configurable time interval

• TimescaleDB transparently distributes all queries depending on a requested time range

• Only active indexes need to be loaded in RAM

→ performance boost

t

Hypertable

index

chunk

SELECT
SELECT

INSERT
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Compression
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SELECT

INSERT

• “Cold” chunks are compressed automatically according to a specified policy

• When a SELECT query arrives, the chunk is decompressed on the fly

• INSERT/UPDATE queries are forbidden

• Compression algorithm depends on a column’s data type:

– Gorilla compression for floats

– Delta-of-delta + Simple-8b for timestamps and other integer-like types

– Dictionary compression for columns with discrete values

– LZ-based array compression for all other types
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Continuous Aggregates
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• Materialised views that are updated incrementally in background

• Downsampled telemetry

– efficient SELECTs at any level

– numerical parameters: compute averages

– alarms or discrete parameters: propagate depending on severity

t

CREATE MATERIALIZED VIEW ...

WITH (timescaledb.continuous) AS

SELECT time_bucket('1 hour'),

AVG(value)...

UPDATE
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Continuous Aggregates - limitations
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• Not possible to create CAGG on top of another CAGG

• Not possible to compress CAGG

• Not possible to specify chunk time interval

• Upcoming PostgreSQL 14 might have native support for incremental updates of materialised views:
CREATE [ INCREMENTAL ] MATERIALIZED VIEW

• TimescaleDB 2.0 added Actions API that allows creating your own background jobs written in PL/pgSQL



© The Terma Group 2021© The Terma Group 2021

Our dataset
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• Each data point in the telemetry time series has:

– timestamp (on-board time, microsecond precision)

– raw value (as extracted from a TM packet)

– engineering value (after calibration)

– monitoring state (PostgreSQL enum: alarm, warning, event, expired, ok etc)

– parameter ID

– satellite ID

• Index with key fields: satellite ID, parameter ID, timestamp

• Source data: 28 parameters from 4 satellites sampled every 10 seconds over 6 years

– 1.7 billion rows

– uncompressed: 171 GB (including the index)

– compressed: 17 GB → 90% compression rate

• Downsampled level #1: 30 min intervals

– 9.6 million rows, 772 MB

• Downsampled level #2: 3h intervals

– 1.6 million rows, 129 MB
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Tips and tricks: minimizing data size
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• Order of columns matters! Avoid or minimize 

padding
Row header 24 bytes

Timestamp timestamptz 8 bytes

Raw value double 8 bytes

Eng value double 8 bytes

Param ID smallint 2 bytes

padding 2 bytes

Mon state enum 4 bytes

Sat ID smallint 2 bytes

Total 58 bytes
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Tips and tricks: minimizing data size
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• Order of columns matters! Avoid or minimize 

padding

– list your columns from bigger to smaller data type

– check your row size with pg_column_size

– check alignment of types with pg_type.typalign

• Use the smallest type that serves your needs

• Postgres ARRAY type has 24-byte header too

• Don’t create unnecessary indexes

– remember that having the PRIMARY KEY constraint 

implicitly creates an index

Row header 24 bytes

Timestamp timestamptz 8 bytes

Raw value double 8 bytes

Eng value double 8 bytes

Monitoring state enum (oid) 4 bytes

Parameter ID smallint 2 bytes

Satellite ID smallint 2 bytes

Total 56 bytes
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Tips and tricks: choosing the right chunk interval
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• General rule: active chunks (+ indexes) must fit into RAM

– if a chunk doesn’t fit, it will push other cached chunks out of memory

– if chunks are too small, their total number will be very high → degraded query planning performance

• Not possible to specify chunk size instead of interval

– assumes steady inflow of data

– if it becomes a problem, it can be mitigated with set_chunk_time_interval()

• In our example dataset we configure the interval to 6 days → 366 chunks

– 48 MB when compressed

– 451 MB uncompressed

277

174

Uncompressed chunk size (MB)

table data index
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Tips and tricks: automatic switching between downsampling levels
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• Write a SELECT for each table and combine them with UNION ALL

• In each SELECT add a WHERE condition that is true only for a table from which we want to select

SELECT time_bucket(bucket, time), avg(value)

FROM source_data

WHERE bucket < '30m'::interval

GROUP BY 1

UNION ALL

SELECT time_bucket(bucket, time), avg(value)

FROM downsample_1

WHERE bucket >= '30m'::interval AND bucket < '3h'::interval

GROUP BY 1

UNION ALL ...

→ less work for DB

→ less data to display
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Tips and tricks: built-in variables in Grafana
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• Grafana has a PostgreSQL data source with a special option to enable TimescaleDB features

• $__timeFrom() and $__timeTo() – time range of your graph

• $__interval – time interval for one point on the graph (our bucket argument)
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Grafana
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Conclusions

1 February 2021 18

• You don’t need to spend a fortune on a data analytics platform if you set your goals clearly

• PostgreSQL & TimescaleDB can be deployed anywhere, from a laptop to a cluster, scaling to your needs

• “One size fits all” is not always optimal

– each team can afford their own installation while sharing a repository with configuration and reference data

• Let your users choose their tools
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Find out more…

tgss.terma.com

About Terma:

www.terma.com/press/newsletter

www.linkedin.com/company/terma-a-s

www.youtube.com/user/TermaTV
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