
© The Terma Group 2021© The Terma Group 2021

and not spend a fortune on it

1 February 2021

© Terma Group 2021.

Published by The

Aerospace Corporation

with Permission.

Approved for Public

Release

How to Keep all Telemetry from
Your Constellation in One Basket

Petro Kazmirchuk, Rüdiger Gad GSAW 2021

© The Terma Group 2021© The Terma Group 2021

Our challenges

1 February 2021 2

• Spacecraft data archives are growing very fast in size and complexity

• Advent of satellite (mega) constellations multiplies this growth

– insight from multiple satellites' data at once?

• Solutions might reflect data structure

– but more often - team structure

– federated solutions are especially complex

• Integrating and updating dependencies becomes a burden

– commercial offers like Cloudera might help here

• Investments in such storage need to be justified
→ more projects and missions share one setup

→ more investment to accommodate size and varying needs

• Hardware requirements are very high

– usually require a computing cluster

– difficult to run on a laptop

Can we build a simple and generic tool that would cover most of use cases?

© The Terma Group 2021© The Terma Group 2021

STAT Design Goals

1 February 2021 3

• STAT – a data archiving and analysis tool for Terma Ground Segment Suite (TGSS)

• Core SQL model

– unified access to data of various nature

– common language for different engineers

– public API through SQL views and functions

• Choose your own analytics tool

– Jupyter notebooks, Grafana, Excel, Tableau etc

– Grafana as a baseline

• Data sources:

– CCS5: spacecraft checkout and mission control system

– ORBIT: flight dynamics system

– 3rd party software

© The Terma Group 2021© The Terma Group 2021

STAT Design Goals

1 February 2021Images © ESA 4

• Primary focus on numerical and discrete housekeeping TM

• Support both AIT and OPS

• Minimal dependencies; support Windows & Linux

© The Terma Group 2021© The Terma Group 2021

Technology Stack

1 February 2021 5

• PostgreSQL

– Schemas help with separating public API from implementation details

– Foreign-data wrapper (FDW) for importing data

– Performance bottlenecks can be found early and easily with EXPLAIN

• TimescaleDB for time series

– data stored in “hypertables”

– same standard SQL, JOINs with other PostgreSQL tables

– transparent compression

– continuous aggregates

– open-source, permissible license

– excellent user manual

• Python

– Dash & Plotly for highly customizable WebUI

– Flask for the Web server and RESTful API

– “wheel” installer for PIP

© The Terma Group 2021© The Terma Group 2021

Workflow

1 February 2021 6

STAT DB

Full time range

Whole fleet

Efficient data analytics

TM, events, alarms

ORBIT

(AoS, LoS etc)

Web UI

REST

SQL

Python

CCS5 DB

MySQL or PostgreSQL

Optimised for CCS5

efficiency

One DB per session

Not convenient for data

analytics

Original

frequency
Downsampling

Level 1

Downsampling

Level 2

…

© The Terma Group 2021© The Terma Group 2021

Hypertables

1 February 2021 7

• “Hypertable” looks like a normal SQL table with a timestamp column

• In fact, it is an abstraction over a set of “chunks”

• Each chunk is a normal PostgreSQL table and corresponds to a configurable time interval

• TimescaleDB transparently distributes all queries depending on a requested time range

• Only active indexes need to be loaded in RAM

→ performance boost

t

Hypertable

index

chunk

SELECT
SELECT

INSERT

© The Terma Group 2021© The Terma Group 2021

Compression

1 February 2021 8

SELECT

INSERT

• “Cold” chunks are compressed automatically according to a specified policy

• When a SELECT query arrives, the chunk is decompressed on the fly

• INSERT/UPDATE queries are forbidden

• Compression algorithm depends on a column’s data type:

– Gorilla compression for floats

– Delta-of-delta + Simple-8b for timestamps and other integer-like types

– Dictionary compression for columns with discrete values

– LZ-based array compression for all other types

© The Terma Group 2021© The Terma Group 2021

Continuous Aggregates

1 February 2021 9

• Materialised views that are updated incrementally in background

• Downsampled telemetry

– efficient SELECTs at any level

– numerical parameters: compute averages

– alarms or discrete parameters: propagate depending on severity

t

CREATE MATERIALIZED VIEW ...

WITH (timescaledb.continuous) AS

SELECT time_bucket('1 hour'),

AVG(value)...

UPDATE

© The Terma Group 2021© The Terma Group 2021

Continuous Aggregates - limitations

1 February 2021 10

• Not possible to create CAGG on top of another CAGG

• Not possible to compress CAGG

• Not possible to specify chunk time interval

• Upcoming PostgreSQL 14 might have native support for incremental updates of materialised views:
CREATE [INCREMENTAL] MATERIALIZED VIEW

• TimescaleDB 2.0 added Actions API that allows creating your own background jobs written in PL/pgSQL

© The Terma Group 2021© The Terma Group 2021

Our dataset

1 February 2021 11

• Each data point in the telemetry time series has:

– timestamp (on-board time, microsecond precision)

– raw value (as extracted from a TM packet)

– engineering value (after calibration)

– monitoring state (PostgreSQL enum: alarm, warning, event, expired, ok etc)

– parameter ID

– satellite ID

• Index with key fields: satellite ID, parameter ID, timestamp

• Source data: 28 parameters from 4 satellites sampled every 10 seconds over 6 years

– 1.7 billion rows

– uncompressed: 171 GB (including the index)

– compressed: 17 GB → 90% compression rate

• Downsampled level #1: 30 min intervals

– 9.6 million rows, 772 MB

• Downsampled level #2: 3h intervals

– 1.6 million rows, 129 MB

© The Terma Group 2021© The Terma Group 2021

Tips and tricks: minimizing data size

1 February 2021 12

• Order of columns matters! Avoid or minimize

padding
Row header 24 bytes

Timestamp timestamptz 8 bytes

Raw value double 8 bytes

Eng value double 8 bytes

Param ID smallint 2 bytes

padding 2 bytes

Mon state enum 4 bytes

Sat ID smallint 2 bytes

Total 58 bytes

© The Terma Group 2021© The Terma Group 2021

Tips and tricks: minimizing data size

1 February 2021 13

• Order of columns matters! Avoid or minimize

padding

– list your columns from bigger to smaller data type

– check your row size with pg_column_size

– check alignment of types with pg_type.typalign

• Use the smallest type that serves your needs

• Postgres ARRAY type has 24-byte header too

• Don’t create unnecessary indexes

– remember that having the PRIMARY KEY constraint

implicitly creates an index

Row header 24 bytes

Timestamp timestamptz 8 bytes

Raw value double 8 bytes

Eng value double 8 bytes

Monitoring state enum (oid) 4 bytes

Parameter ID smallint 2 bytes

Satellite ID smallint 2 bytes

Total 56 bytes

© The Terma Group 2021© The Terma Group 2021

Tips and tricks: choosing the right chunk interval

1 February 2021 14

• General rule: active chunks (+ indexes) must fit into RAM

– if a chunk doesn’t fit, it will push other cached chunks out of memory

– if chunks are too small, their total number will be very high → degraded query planning performance

• Not possible to specify chunk size instead of interval

– assumes steady inflow of data

– if it becomes a problem, it can be mitigated with set_chunk_time_interval()

• In our example dataset we configure the interval to 6 days → 366 chunks

– 48 MB when compressed

– 451 MB uncompressed

277

174

Uncompressed chunk size (MB)

table data index

© The Terma Group 2021© The Terma Group 2021

Tips and tricks: automatic switching between downsampling levels

1 February 2021 15

• Write a SELECT for each table and combine them with UNION ALL

• In each SELECT add a WHERE condition that is true only for a table from which we want to select

SELECT time_bucket(bucket, time), avg(value)

FROM source_data

WHERE bucket < '30m'::interval

GROUP BY 1

UNION ALL

SELECT time_bucket(bucket, time), avg(value)

FROM downsample_1

WHERE bucket >= '30m'::interval AND bucket < '3h'::interval

GROUP BY 1

UNION ALL ...

→ less work for DB

→ less data to display

© The Terma Group 2021© The Terma Group 2021

Tips and tricks: built-in variables in Grafana

1 February 2021 16

• Grafana has a PostgreSQL data source with a special option to enable TimescaleDB features

• $__timeFrom() and $__timeTo() – time range of your graph

• $__interval – time interval for one point on the graph (our bucket argument)

© The Terma Group 2021© The Terma Group 2021

Grafana

1 February 2021 17

© The Terma Group 2021© The Terma Group 2021

Conclusions

1 February 2021 18

• You don’t need to spend a fortune on a data analytics platform if you set your goals clearly

• PostgreSQL & TimescaleDB can be deployed anywhere, from a laptop to a cluster, scaling to your needs

• “One size fits all” is not always optimal

– each team can afford their own installation while sharing a repository with configuration and reference data

• Let your users choose their tools

© The Terma Group 2018

Find out more…

tgss.terma.com

About Terma:

www.terma.com/press/newsletter

www.linkedin.com/company/terma-a-s

www.youtube.com/user/TermaTV

1 February 2021 19

References
1. Building columnar compression in a row-oriented database

2. Incremental materialized view maintenance for PostgreSQL 14

3. Grafana global variables

4. PostgreSQL Wiki: Inlining of SQL functions

Thank you!

https://tgss.terma.com/
https://blog.timescale.com/blog/building-columnar-compression-in-a-row-oriented-database/
https://blog.dbi-services.com/incremental-materialized-view-maintenance-for-postgresql-14/
https://grafana.com/docs/grafana/latest/variables/variable-types/global-variables/
https://wiki.postgresql.org/wiki/Inlining_of_SQL_functions

